Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

(n-Butyldiphenylphosphine)dichloro $(\eta^6$ -p-cymeme)ruthenium(II)

Giuseppe Bruno et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

 \bigcirc 2000 International Union of Crystallography • Printed in Great Britain – all rights reserved

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

(*n*-Butyldiphenylphosphine)dichloro-(η^6 -*p*-cymeme)ruthenium(II)

Giuseppe Bruno,* Manuela Panzalorto, Francesco Nicoló, Carmela Grazia Arena and Paola Cardiano

Dip. di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, 98166 Vill. Sant'Agata, Messina, Italy Correspondence e-mail: bruno@medif0.unime.it

Received 20 July 2000 Accepted 25 August 2000

Data validation number: IUC0000230

The title ruthenium complex, $[RuCl_2(C_{10}H_{14})(C_{16}H_{19}P)]$, contains a monodentate $(C_4H_9)PPh_2$ ligand coordinated by the P atom. Coordination about the metal centre is completed by a η^6 -p-cymene ligand and two Cl atoms.

Comment

The η^6 -arene complexes of Ru^{II} have shown promising results in the catalytic hydrogenation of olefins. Furthermore, complexes of this type have been successfully employed in asymmetric olefin hydrogenation. The structure of (n-butyl-diphenylphosphine)dichloro(η^6 -p-cymeme)ruthenium(II), (I), is presented here.

Experimental

The title compound was synthesized by reaction of [RuCl₂(*p*-cymene)] and ⁿBuPh₂P in tetrahydrofuran in a 1:2 molar ratio and crystals were obtained by slow evaporation of a CH₂Cl₂/hexane solution.

Crystal data

$[RuCl_2(C_{10}H_{14})(C_{16}H_{19}P)]$	$D_x = 1.421 \text{ Mg m}^{-3}$
$M_r = 548.46$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 30
a = 10.574 (3) Å	reflections
b = 12.983 (4) Å	$\theta = 13-30^{\circ}$
c = 19.239 (6) Å	$\mu = 0.894 \text{ mm}^{-1}$
$\beta = 103.99 (2)^{\circ}$	T = 293 (2) K
$V = 2562.8 (13) \text{ Å}^3$	Regular prismatic, red
Z = 4	$0.50 \times 0.20 \times 0.14 \text{ mm}$

Data collection

 $\begin{array}{lll} \text{Siemens } R3m/V \text{ diffractometer} & h = -2 \rightarrow 12 \\ \omega - 2\theta \text{ scans} & k = 0 \rightarrow 15 \\ 4878 \text{ measured reflections} & l = -22 \rightarrow 22 \\ 4530 \text{ independent reflections} & 3 \text{ standard reflections} \\ 2393 \text{ reflections with } I > 2\sigma(I) & \text{every } 197 \text{ reflections} \\ R_{\text{int}} = 0.0170 & \text{intensity decay: } 2.3\% \\ \theta_{\text{max}} = 25.04^{\circ} & & & & & \end{array}$

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & \mbox{H-atom parameters constrained} \\ R[F^2 > 2\sigma(F^2)] = 0.057 & \mbox{$w = 1/[\sigma^2(F_o^2) + (0.0880P)^2]$} \\ wR(F^2) = 0.159 & \mbox{where } P = (F_o^2 + 2F_c^2)/3 \\ S = 0.864 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 4530 \mbox{ reflections} & \Delta\rho_{\rm max} = 1.378 \mbox{ e Å}^{-3} \\ 265 \mbox{ parameters} & \Delta\rho_{\rm min} = -0.868 \mbox{ e Å}^{-3} \end{array}$

Table 1Selected geometric parameters (Å, °).

Ru-C5	2.170 (8)	Ru-C2	2.241 (8)
Ru-C4	2.176 (8)	Ru-P	2.352 (2)
Ru-C1	2.225 (8)	Ru-Cl1	2.413 (2)
Ru-C6	2.225 (8)	Ru-Cl2	2.413 (2)
Ru-C3	2.228 (8)		
P-Ru-Cl1	87.06 (8)	Cl1-Ru-Cl2	88.47 (8)
P-Ru-Cl2	83.51 (7)		` '

The H atoms were located on idealized positions and allowed to ride on the their parent C atoms ($U_{\rm iso}$ = 0.08 Å²).

Data collection: *P*3/V (Siemens, 1989); cell refinement: *P*3/V; data reduction: *XDISK* (Siemens, 1990); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: locally modified *PARST*95 (Nardelli, 1995) and *SHELXL*97.

We would like to express our gratitude, for support and aid, to the Italian MURST and to the 'Centro Interdipartimentale di Servizi per la Diffrattometria a Raggi X' of the University of Messina.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1990). *Acta Cryst*. A**46**, 467–473. Sheldrick, G. M. (1997). *SHELXL*97. University of Göttingen, Germany.

Siemens (1989). P3/V. Release 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1990). XDISK. Release 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.